Published
December 1, 2015
Keywords
- simulation modeling,
- portfolio management,
- international financial markets,
- financial forecasting and simulation,
- pension funds
Abstract
The present paper proposes the use of a life cycle investment benchmark (called actual position benchmark or APB) in the asset types allowed in the CONSAR rules for Mexican pension funds (Siefores). Its mean-variance efficiency is tested against the equally weighted, the minimum variance and max Sharpe ratio (MSR) portfolios with a daily backtest from April 2008 to April 2013 and a 10-year daily Monte Carlo simulation. The results suggest that even though the msr portfolio gives the highest accumulated return, the APB is an acceptable benchmark by its stable and statistically equal Sharpe ratio, its max drawdown behavior, and its statistically equal return against the former.References
- Amenc, Nol; Goltz, Felix; Lodh, Ashish, and Martellini, Lionel (2012). Diversifying the Diversifiers and Tracking the Tracking Error. The Journal of Portfolio Management, 38 (3), pp. 72-88.
- Bailey, Jeffery V. (1992). Evaluating Benchmark Quality. Financial Analysts Journal, 48 (3), pp. 33-40.
- Banxico (2013). Tasas y precios de referencia. CF300 - Vector de precios de títulos gubernamentales (on the run. Available at: http://www.banxico.gob.mx/SieInternet/consultarDirectorioInternetAction.do?accion=consultarCuadro&idCuadro=CF300§or=18&locale=es [Accesed December 11, 2013].
- Black, Fischer, and Litterman, Robert (1992). Global portfolio optimization. Financial Analysts Journal, 48 (5), pp. 28-43. doi:10.2469/faj.v48.n5.28
- CONSAR (2012). Disposiciones de carácter general que establecen el régimen de inversión al que deberán sujetarse las sociedades de inversión especializadas de fondos para el retiro. Normatividad-circulares CONSAR. Available at: http://www.consar.gob.mx/normatividad/normatividad-normatividad_consar-circulares.shtml [Accesed February 3, 2013].
- (2013). Inversiones de las Siefores. Información estadística. Available at: http://www.consar.gob.mx/SeriesTiempo/CuadroInicialaspx?md=21 [Accesed August 1, 2013].
- De la Torre, Oscar; Galeana, Evaristo; Martínez, María Isabel, and Aguilasocho, Dora (2015). A minimum variance benchmark to measure the performance of pension funds in Mexico. Contaduría y Administración unam, 61(3), pp. 593-614.
- García, Claudia María, and Moreno, Jilmer Arley (2011). Optimización de portafolios de pensiones en Colombia: el esquema de multifondos, 2003-2010. Ecos de Economía, 15 (33), pp. 139-183.
- Gibbons, Michael; Ross, Stephen, and Shanken, Jay (1989). A Test of the Efficiency of a Given Portfolio. Econometrica, 57 (5), pp. 1121-1152.
- Goltz, F. (2012). Alternative Equity Beta Benchmarks. [on line] Available at: http://www.edhec-risk.com/indexes/equity_index_research [Accesed February 13, 2013].
- Goltz, Felix, and Le Sourd, Véronique (2011). Does Finance Theory Make the Case for Capitalization-Weighted Indexing? The Journal of Index Investing, 2 (2), pp. 59-75.
- Grinold, Richard C. (1989). Are Benchmark Portfolios Efficient? The Journal of Portfolio Management, 19 (1), pp. 34-40.
- Haugen, Robert A., and Baker, Nardin L. (1990). The efficient market inefficiency of capitalization-weighted stock portfolios. The Journal of Portfolio Managemen, 17 (3), pp. 35-40.
- Ibbotson, Roger (2010). The importance of asset allocation. Financial Analysts Journal, 66 (2), pp. 18-20.
- Jara, Diego (2006). Modelo de la regulación de las AFP en Colombia y su impacto en el portafolio de los fondos de pensiones. Ensayos sobre Política Económica, 0 (52), pp. 162-221.
- Jara, Diego; Gómez, Carolina, and Pardo, Andrés (2005). Análisis de eficiencia de los portafolios pensionales obligatorios en Colombia. Ensayos sobre Política Económica, 23 (49), pp. 192-239.
- Kandel, Shmuel, and Stambaugh, Robert F. (1989). A Mean-Variance Framework for Tests of Asset Pricing Models. The review of Financial Studies, 2 (2), pp. 125-156.
- Kuenzi, David E. (2003). The Benchmark’s Benchmark: Measuring the Performance of a Manager’s Long-Term Strategy. Working paper, October.
- Lintner, John (1965). The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. The Review of Economics and Statistics, 47 (1), pp. 13-37.
- Maggin, John L.; Donald, Tuttle; McLeavey, Dennis W., and Pinto, Jerald E. (2007). Managing Investment Portfolios: A Dynamic Process. Hoboken: John Miley and Sons.
- Roll, Richard (1977). A critique of the asset pricing theory’s tests Part I: On past and potential testability of the theory. Journal of Financial Economics, 4 (2), pp. 129-176.
- S&P (2012). S&P Target Date Index Series Methodology. S&P Dow Jones Indices llc. [pdf] Available at: http://latam.spindices.com/documents/methodologies/methodology-sp-target-date.pdf?force_download=true [Accesed May 27, 2013].
- Samuelson, Paul (1965). Proof that properly anticipated prices fluctuate randomly. Industrial Management Review, 6 (2), pp. 41-49.
- Sharpe, William (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. The Journal of Finance, 19 (3), pp. 425-442.
- (1966). Mutual fund performance. The Journal of Business, 39 (1), pp. 119-18.
- Srinivas, Pulle Subrahmanya, and Yermo, Juan (1999). Do Investment Regulations Compromise Pension Fund Performance? Evidence from Latin America. Revista de Análisis Económico, 14 (1), pp. 67-120.
- Tabner, Isaac (2007). Benchmark concentration: capitalization weights versus equal weights in the ftse 100 Index. [on line] Avilable at: https://dspace.stir.ac.uk/bitstream/1893/2454/1/MFJ Article SSRN Version.pdf [Accesed February 3, 2013].
- Treynor, Jack, and Black, Fisher (1973). How to Use Security Analysis to Improve Portfolio Selection. The Journal of Business, 46 (1), pp. 66-86.
- Valdes-Prieto, Salvador (2000). Do investment regulations compromise pension fund performance? Evidence from Latin America: A comment. Revista de Análisis Económico, 15 (2), pp. 109-120.
- Waring, Barton, and Whitney, Duane (2009). An Asset-Liability Version of the Capital Asset pricing Model with a multi-period two-fund theorem. The Journal of Portfolio Management, 35 (4), pp.111-131.