No. 32 (2010)
Artículos
Comovimiento entre mercados accionarios de América Latina y Estados Unidos: Un enfoque de wavelets
Abstract
Este documento analiza la estructura de correlación entre los índices accionarios representativos de Estados Unidos como el s&p500 y djia, así como de América Latina, como el ipc de México, ibovespa de Brasil y Merval de Argentina, para diferentes niveles de resolución y escalas de tiempo, que permite el enfoque de wavelets, contrario al enfoque tradicional basado en un análisis global de series de tiempo. Lo anterior se logra descomponiendo las series de rendimientos de los índices accionarios aplicando la transformada wavelet discreta de máximo traslape y como filtro la función de Daubechies de mínima asimetría ma (8). Los resultados empíricos muestran evidencia de un comportamiento no homogéneo entre las correlaciones de los mercados accionarios en horizontes de tiempo de diferente duración; en algunos casos la correlación es más fuerte en periodos con duración de muy corto plazo y en otros en periodos con duración de mayor plazo. La importancia de los resultados recae en la forma de estructuración de carteras con activos de diferentes mercados y diferentes horizontes de tiempo, tal que se obtengan diversificaciones más eficientesReferences
- Addison, P. (2002), The Illustrated Wavelet Transform Handbook, Taylor and Francis, Reino Unido,1ª edición.
- Adler, M., y D. Simon (1986), “Exchange Risk Surprises in International Portfolios”, Journal of Portfolio Management, Vol. 12, pp. 44-53.
- Aggrawal, R., y N. A. Kyaw (2005), “Equity Market Integration in the nafta Region: Evidence from Unit Root and Cointegration Tests”, International Review of Financial Analysts, Vol. 4, pp. 393-406.
- Atkan, B., A. B. Mabrouk, M. Ozturk, y N. Rhaiem (2009), “Wavelet-Based Systemic Risk Estimation: An Application on Istanbul Stock Exchange”, International Research Journal of Finance and Economics, núm. 23, pp. 33-45.
- Behrad, N. (2008), “Portfolio Allocation using Wavelet Transform”, disertación doctoral, The City University of New York, Facultad de Economía.
- Berben, R. P., y W. J. Jansen (2005), “Comovement in International Equity Markets: A Sectoral View”, North American Journal of Economics and Finance, Vol. 8, pp. 23-37.
- Black, F. (1989), “Universal Hedging: Optimizing Currency Risk and Reward in International Equity Portfolios”, Financial Analysts Journal, Vol. 45, pp. 16-22.
- Boroschek, R., L. Szczecinski, D. Correa, A. Morales, y R. Rivas (2002), “Detección de propiedades tiempo-frecuencia en registros sísmicos chilenos”, VIII Jornadas Chilenas de Sismología e Ingeniería Antisísmica, Valparaíso, Chile.
- Brooks, R., y M. del Negro (2004), “The Rise in Comovement Across National Stock Markets: Market Integration or it Bubble”, Journal of Empirical Finance, Vol. 11, pp. 659-680.
- Burrus, C. S., R. A. Gopinath, y H. Guo (1998), Introduction to Wavelets and Wavelet Transforms, A Primer, Nueva Jersey, Prentice Hall.
- Ciner, C. (2006), “A Further Look at Linkages Between nafta Equity Markets”, The Quarterly Review of Economics and Finance, Vol. 46, núm. 3, pp. 338-352.
- Chukwuogor-Ndu, C., y K. Kasibhatla (2007), “Post nafta Integration of North American Stock Markets: Implications for Financial Decision Making”, North American Journal of Finance and Banking Research, Vol. 1, núm. 1, pp. 37-53.
- Darrat, A. F., y M. Zhong (2005), “Equity Market Linkage and Multinational Trade Accords: The Case of nafta”, Journal of International Money and Finance, Vol. 24, pp. 793-817.
- Daubechies, I. (1988), “Orthonormal Bases of Compactly Supported Wavelets”, Communications on Pure and Applied Mathematics, núm. 41, pp. 909-996.
- Eun, C., y B. Resnick (1984), “Estimating the Correlation Structure of International Share Prices”, Journal of Finance, Vol. 39, núm. 5, pp. 1311-1324.
- Eun, C. (1988), “Exchange Rate Uncertainty, Forward Contracts and International Portfolio Selection”, Journal of Finance, Vol. 43, núm. 1, pp. 197-215.
- Fadhlaoui, K., M. Bellalah, A. Dherry, y M. Zouaouii (2009), “An Empirical Examination of International Diversification Benefits in Central European Emerging Equity Markets”, International Journal of Business, Vol. 14, núm. 2, pp. 163- 173.
- Fernández, V. (2005), “The Intertemporal capm and a Wavelet-Based Decomposition of Value at Risk”, Studies in Nonlinear Dynamics and Econometrics, núm. 9, pp. 1-35.
- Flavin, T. J. (2004), “The Effect of the Euro on Country versus Industry Portfolio Diversification”, Journal of International Money and Finance, Vol. 23, pp. 1137- 1158.
- Forbes, K., y R. Rigobon (1999), “No Contagion, Only Interdependence: Measuring Stock Market Co-movements”, nber Working Paper Series, núm. 7267.
- French, K., y J. Poterba (1991), “Investor Diversification and International Equity Markets”, American Economic Review, Vol. 81, núm. 2, pp. 222-226.
- Gencay, R., F. Selcuk, y B. Whitcher (2002), An Introduction to Wavelets and Other Filtering Methods in Finance and Economics, Academic Press, eua.
- Graps, A. (1995), “An Introduction to Wavelets”, ieee Proceedings Computational Science and Engineering, núm. 2, pp. 50-61.
- Griffin, J. M., y A. G. Karolyi (1998), “Another Look at Industrial Structure of Market for International Diversification”, Journal of Financial Economics, Vol. 50, pp. 321-344.
- Grinsted, A., J. C. Moore, y S. Jevrejeva (2004), “Application of the Cross Wavelet Transform and Wavelet Coherence to Geophysical Time Series”, Nonlinear Processes in Geophysics, núm. 11, pp. 561-566.
- Grubel, H. (1968), “Internationally Diversified Portfolios: Welfare Gains and Capital Flows”, American Economic Review, Vol. 58, núm. 5, pp. 1299-1314.
- Härdle, W., G. Kerkyacharian, D. Picard, y A. Tsybakov (1998), “Wavelets, Approximation and Statistical Applications”, Lecture Notes in Statistics, núm. 129, primavera.
- Kanas, A. (1998), “Linkages Between the US and European Equity Markets: Further Evidence from Cointegration Tests”, Applied Financial Economics, Vol. 8, pp. 245-256.
- Lai, K., K. He, C. Xie, y S. Chen (2006), “Market Risk for Nonferrous Metals: a Wavelet Based var Approach”, ieee Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications, pp. 356-362.
- Lee, H. S. (2004), “International Transmission of Stock Market Movements: A Wavelet Analysis”, Applied Economics Letters, Vol. 11, núm. 3, 197-201.
- Levy, H., y M. Sarnat, (1970), “International Diversification of Investment Portfolios”, American Economic Review, Vol. 60, núm. 4, pp. 668-675.
- Mallat, S. (1989), “A Theory for Multiresolution Signal Decomposition: The Wavelet Representation”, ieee Transactions on Pattern Analysis and Machine Intelligence, núm. 11, pp. 674-693.
- Markowitz, H. (1952), “Portfolio Selection”, The Journal of Finance, Vol. 7, núm. 1, pp. 77-91.
- Nelsen, Roger (2007), An Introduction to Copulas, Nueva York, Springer Series in Statistics, pp. 270.
- Norsworthy, J., D. Li, y R. Gorener (2000), “Wavelet-Based Analysis of Time Series: An Export from Engineering to Finance”, ieee Proceedings Engineering Management Society, pp. 126-132.
- Ramsey, J., y C. Lampart (1997), “The Decomposition of Economic Relationships by Time Scale Using Wavelets”, C.V. Starr Center for Applied Economics, Working Paper, núm. 97-08, New York University. Disponible en internet: http://ideas.repec.org/p/cvs/starer/97-08.html.
- Ramsey, J. (1999), “The Decomposition of Economic Relationships by Time Scale Using Wavelets: Expenditure and Income”, Studies in Nonlinear Dynamics and Econometrics, núm. 3, pp. 23-42.
- Ranta, M. (2008), “Correlation Structure of Security Markets: A Wavelet Approach”, Proceedings of International Conference on Applied Business & Economics, Grecia.
- Ranta, M. (2010), “Wavelet Multiresolution Analysis of Financial Time Series”, PhD dissertation, University of Vaasa, Faculty of Technology. Disponible en internet: http://www.uwasa.fi/materiaali/pdf/isbn_978-952-476-303-5.pdf.
- Riley, K. F., M. P. Hobson, y S. J. Bence (1997), Mathematical Methods for Physics and Engineering, Reino Unido, Cambridge University Press.
- Rua, A., y L. C. Nunes (2009), “International Comovement of Stock Market Returns: A Wavelet Analysis”, Journal of Empirical Finance, Vol. 16, núm. 4, pp. 632- 639.
- Ruppert, D. (2004), Statistics and Finance: An Introduction, Springer Texts in Statistics, Nueva York, Springer-Verlag.
- Serroukh, A., A. Walden, y D. B. Percival (2000), “Statistical Properties and Uses of the Wavelet Variance Estimator for the Scale Analysis of Time Series”, Journal of the American Statistical Association, Vol. 95, núm. 449, pp. 184-196.
- Sharkasi, A., H. J. Ruskin, y M. Crane, (2005), “Interrelationships among International Stock Market Indices: Europe, Asia and the Americas”, International Journal of Theoretical and Applied Finance, Vol. 8, núm. 5, pp. 603-622.
- Solnik, B. (1974), “Why Not Diversify Internationally?”, Financial Analysts Journal, Vol. 20, pp. 48-54.
- Téllez, J. C. (2009), “Estimación del valor en riesgo a través de wavelets”, disertación doctoral, Escuela de Graduados en Administración y Dirección de Empresas, itesm-campus Ciudad de México.
- Téllez, J. C., T. Vargas, y J. A. Hernández (2009), “Estimating Market Risk under a Wavelet-Based Approach: Mexican Case”, iccsit, 2nd ieee International Conference on Computer Science and Information Technology, pp. 353-357.
- Xiong, X., X. Zhang, W. Zhang, W., y C. Li (2005), “Wavelet-Based Beta Estimation of China Stock Market”, ieee Proceedings Fourth International Conference on Machine Learning and Cybernetics, núm. 6, pp. 3501-3505.