Núm. 39 (2013)

Orthogonal GARCH Matrixes in the Active Portfolio Management of Defined Benefit Pension Plans: A Test for Michoacán

Oscar De la Torre Torres
Universidad Michoacana de San Nicolás de Hidalgo
Publicado mayo 23, 2014


This paper presents the usefulness of an active portfolio management process with orthogonal GARCH (OGARCH) matrixes in order to achieve a 7.5% actuarial target return in defined benefit pension funds such as the Dirección de Pensiones Civiles del Estado de Michoacán. To prove this, four discrete event simulations were performed using, in the first scenario, a passive portfolio management process with a target position rebalancing discipline and, in the other three, an active portfolio management with a range portfolio rebalancing one. In these last three simulations, a constant covariance, a Gaussian distribution OGARCH and a Student's t-distribution OGARCH covariance matrix were used. The attained results suggest that the Student's t-distribution OGARCH matrix is the most suitable for the investment process.


  1. Alexander, C. (2001). Orthogonal garch. In: Carol Alexander (ed.). Mastering Risk, 2. London: FT-Prentice Hall, pp. 21-38.
  2. Alexander, C. and Chibumba, A. (1996). Multivariate Orthogonal Factor garch”. Working paper, University of Sussex Discussion Papers in Mathematics.
  3. Banco de México (2012). Vector de Precios de Títulos Gubernamentales. [online] Available at: http://www.banxico.org.mx/portalesEspecializados/tasas [Accessed 3
  4. February 2012].
  5. Best, M. and Grauer, R. (1991). On the Sensitivity of Mean-Variance-Efficient Portfolios to Changes in Asset Means: Some Analytical and Computational Results. The Review of Financial Studies, 4(2), pp. 315-342.
  6. Bollerslev, T. (1986). Generalized Autorregresive Conditional Hetersoskedasticity. Journal of econometrics, (31), pp. 307-327.
  7. Bollerslev, T. (1987). A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return. Review of Economics and Statistics, 69(3), pp. 542-547.
  8. Bollerslev, T. (1990). Modelling the Coherence in Short-Run Nominal Exchange Rates: A Multivariate Generalized arch Model. Review of Economics and Statistics, 72 (3), pp. 498-505.
  9. Box, G., Jenkins, G. and Reinsel, G. (2008). Time Series Analysis Forecasting and Control.Hoboken: John Wiley & Sons Inc.
  10. Chow, G., Jacquier, E., Kritzman, M. and Lowry, K. (1999). Optimal Portfolios in Good Times and Bad. Financial Analysts Journal, 55(3), pp. 65-74.
  11. Daniel, K., Grinblatt, M., Titman, S. and Wermers, R. (1997). Measuring Mutual Fund Performance with Characteristic-Based Benchmarks. The Journal of Finance, 52(3), pp. 1035-1058.
  12. Engle, R. (1982). Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica, 50(4), pp. 987-1007.
  13. Engle, R. and Kroner, K. (1993). Multivariate Simultaneous Generalized arch. Econometric Theory, 11(1), pp. 122-150.
  14. Ennis, R. (2005). Are Active Management Fees Too High? Financial Analysts Journal, 61(5), pp. 44-51.
  15. imef (2006). Sistemas de pensiones en México -perspectivas financieras y posibles Soluciones-. México: Instituto Mexicano de Ejecutivos de Finanzas, ac.
  16. Levy, H. and Markowitz, H. (1979). Approximating Expected Utility by a Function of Mean and Variance. The American Economic Review, 69(3), pp. 308-317.
  17. Lintner, J. (1965). The Valuation of Risk Assets and the Selection of Risky Investments in Stock Portfolios and Capital Budgets. The Review of Economics and Statistics, 47(1), pp. 13-37.
  18. Markowitz, H. (1952). Portfolio Selection. The Journal of Finance, 7(1), pp. 77-91.
  19. Markowitz, H. (1987). Mean-Variance Analysis in Portfolio Choice and Capital Markets. New York: John Wiley & Sons Inc.
  20. Samuelson, P. (1965). Proof That Properly Anticipated Prices Fluctuate Randomly. Industrial Management Review, 6(2), pp. 41-49.
  21. Schwarz, G. (1978). Estimating the Dimension of a Model. The Annals of Statistics. 6(2), pp. 461-464.
  22. Sharpe, W. (1963). A Simplified Model for Portfolio Analysis. Management Science, 9(2), pp. 277-293.
  23. Sharpe, W. (1966). Mutual Fund Performance. The Journal of Business, 39(1), pp. 119-138.
  24. Sharpe, W. (1964). “Capital Asset Prices: A Theory of Market Equilibrium Under Conditions of Risk. The Journal of Finance, 19(3), pp. 425-442.
  25. Smith, V. (1962). An Experimental Study of Competitive Market Behavior. The Journal of Political Economy, 70(2), pp. 111-137.
  26. Tobin, J. (1958). Liquidity Preference as Behavior Toward Risk. Review of Economic Studies, 25(1), pp. 65-86.
  27. Van der Weide, R. (2002). go-garch: a Multivariate Generalized Orthogonal garch Model. Journal of Applied Econometrics, 17(5), pp. 549-564.