Núm. 32 (2010)
Artículos

La demanda de gasolinas en México: Efectos y alternativas ante el cambio climático

Orlando Reyes
Universidad Autónoma de Barcelona
Biografía
Roberto Escalante
Universidad de Londres
Biografía
Anna Matas
Universidad Autónoma de Barcelona
Biografía
núm. 32
Publicado junio 1, 2010
Palabras clave
  • demanda de gasolinas,
  • elasticidades ingreso y precio,
  • sector autotransporte,
  • políticas económicas,
  • emisiones de bióxido de carbono y técnicas de cointegración

Resumen

El autotransporte es de los sectores más contaminantes en México, generando alrededor de 17% del total de emisiones de CO2 . El consumo de gasolina y diesel son la principal fuente de estas emisiones. Este artículo analiza empíricamente la demanda de gasolinas del sector automotor en México durante el periodo 1960-2008. Las estimaciones de las elasticidades de largo y corto plazos del precio e ingreso fueron: -0.285, -0.041, 1.004 y 0.721, lo que implica que la demanda de gasolinas es sensible a la trayectoria del ingreso e inelástica a los precios. Por tanto, un crecimiento económico continuo, sin una adecuada política de precios, generará un aumento en el consumo de gasolinas. Esta situación puede ser más grave al considerar los efectos del cambio climático suponiendo una demanda relativamente constante. Bajo estas circunstancias es necesario implantar diversas políticas públicas simultáneamente para frenar las consecuencias del consumo de gasolinas sobre el cambio climático.

Citas

  1. Ahmadian, M., M. Chitnis, y L. C. Hunt (2007), “Gasoline Demand, Pricing Policy and Social Welfare in the Islamic Republic of Iran”, opec Review, 31 (2), páginas 105-124.
  2. Akinboade, O., E. Ziramba, y W. L. Kumo (2008), “The Demand for Gasoline in South Africa: An Empirical Analysis Using Co-integration Techniques”, Energy Economics, 30 (6), pp. 3222-3229.
  3. Alves, D., y R. Bueno (2003), “Short-Run, Long-Run and Cross Elasticities of Gasoline Demand in Brazil”, Energy Economics, 25 (2), pp. 191-199.
  4. Austin D. (2008), “Climate-Change Policy and CO2
  5. Emissions from Passenger Vehicles”, Congressional Budget Office, Economic and Budget Issue Brief, octubre, pp. 1-8.
  6. Baltagi, B. H., y J. M. Griffin (1983), “Gasoline Demand in the oecd: An Application of Pooling and Testing Procedures”, European Economic Review, 22 (2), páginas 117-137.
  7. Banaszak, S., U. Chakravorty, y P. Leung (1999), “Demand for Ground Transportation Fuel and Pricing Policy in Asian Tigers: A Comparative Study of Korea and Taiwan”, The Energy Journal, 20 (2), pp. 145-165.
  8. Bandivadekar, A., et al. (2008), “Reducing the Fuel Use and Greenhouse Gas Emissions of the us Vehicle Fleet”, Energy Policy, 36 (7), pp. 2754-2760.
  9. Basso, J. L., y T. H. Oum (2007), “Automobile Fuel Demand: A Critical Assessment of Empirical Methodologies”, Transport Reviews, 27 (4), pp. 449-484.
  10. Bentzen, J. (1994), “An Empirical Analysis of Gasoline Demand in Denmark Using Cointegration Techniques”, Energy Economics, 16 (2), pp. 139-143.
  11. Bentzen, J. y T. Engsted (1999), “A Revival of the Autoregressive Distributed Lag Model in Estimating Energy Demand Relationships”, Energy, 26 (1), pp. 45-55.
  12. Berndt, E. R., y G. Botero (1985), “Energy Demand in the Transportation Sector of Mexico”, Journal of Development Economics, 17 (3), pp. 219-238.
  13. Blanchard, O. (1997), “Is There a Core of Usable Macroeconomics?”, The American Economic Review, 87 (2), pp. 244-246.
  14. Britton, E., P. Fisher, y Whitley (1998), “The Inflation Report Projections: Understanding the Fan Chart”, Bank of England Quarterly Bulletin, 38 (1), pp. 30-37.
  15. Burón, J. M., F. Aparicio, O. Izquierdo, A. Gómez, e I. López (2004), “Estimation of the Input Data for the Prediction of Road Transportation Emissions in Spain from 2000 to 2010 Considering Several Scenarios”, Atmospheric Environment, 39 (30), pp. 5585-5596.
  16. Calthrop, E., y S. Proost (1998), “Road Transport Externalities. Interaction Between Theory and Empirical Research”, Environmental and Resource Economics, 11 (3-4), pp. 335-348.
  17. Chandrasiri, S. (2006), “Demand for Road-Fuel in a Small Developing Economy: The Case of Sri Lanka”, Energy Policy, 34 (14), pp. 1833-1840.
  18. Cheung, K., y E. Thomson (2004), “The Demand for Gasoline in China: A Cointegration Analysis”, Journal of Applied Statistics, 31 (5), pp. 533-544.
  19. Dahl, C. A. (1986), “Gasoline Demand Survey”, The Energy Journal, 7 (1), pp. 67-82.
  20. Dahl, C. A. y T. Sterner (1991a), “A Survey of Econometric Gasoline Demand Elasticities”, International Journal of Energy Systems, 11 (2), pp. 53-76.
  21. Dahl, C. A. y T. Sterner (1991b), “Analysing Gasoline Demand Elasticities: A Survey”, Energy Economics, 13 (3), pp. 203-210.
  22. Dahl, C. A. y Kurtubi (2001), “Estimating Oil Product Demand in Indonesia Using a Cointegrating Error Correction Model”, opec Review, 25 (1), pp.1-25.
  23. De Vita, G., K. Endresen, y L. C. Hunt (2006), An Empirical Analysis of Energy Demand in Namibia, Energy Policy, 34 (18), pp. 3447-3463.
  24. Díaz, L., y J. Gasca (2000), inegei. Energía: Sector transporte (2000-2001), Instituto Mexicano del Petróleo (imp), estudio elaborado para el Instituto Nacional de Ecología (ine).
  25. Dickey, D. A., y W. A. Fuller (1981), “Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root”, Econometrica, 49 (4), pp. 1057-1072.
  26. Drollas, L. (1984), “The Demand for Gasoline: Further Evidence”, Energy Economics, 6 (1), pp. 71-82.
  27. Eltony, M. N., y N. H. Al-Mutairi (1995), “Demand for Gasoline in Kuwait: An Empirical Analysis Using Cointegration Techniques”, Energy Economics, 17 (3), pp. 249-253.
  28. Enders, W. (2004), Applied Econometrics Time Series, Wiley Series in Probability and Statistics, 2a edición.
  29. Engle, R. F., y C. W. J. Granger (1987), “Cointegration and Error Correction: Representation Estimation and Testing”, Econometrica, 55 (2), pp. 251-276.
  30. Eskeland, G., y T. Feyzioglu (1997), “Is Demand for Polluting Goods Manageable? An Econometric Study of Car Ownership and Use in Mexico”, Journal of Development Economics, 53 (2), pp. 423-445.
  31. Espey, M. (1998), “Gasoline Demand Revisited: An International Meta-Analysis of Elasticities”, Energy Economics, 20 (3), pp. 273-295.
  32. Galindo, L. M., y E. Salinas (1997), “La demanda de gasolinas en México: La condición de exogeneidad y el comportamiento de los agentes económicos”, en ine-Semarnat (comp.), Instrumentos económicos y medio ambiente, México.
  33. Galindo, L. M. (2005), “Short -and Long- run Demand for Energy in Mexico: A Cointegration Approach”, Energy Policy, 33 (9), pp. 1179-1185.
  34. Goodwin, P. B. (1992), “A Review of New Demand Elasticities with Special Reference to Short and Long Run Effects on Price Changes”, Journal of Transport Economics and Policy, 25 (2), pp. 155-169.
  35. Goodwin, P. B., J. Dargay, y M. Hanly (2004), “Elasticities of Road Traffic and Fuel Consumption with Respect to Price and Income: A Review”, Transport Reviews, 24 (3), pp. 275-292.
  36. Graham, D. J., y S. Glaister (2002), “The Demand for Automobile Fuel a Survey of Elasticities”, Journal of Transport Economics and Policy, 36 (1), pp. 1-26.
  37. Graham, D. J. (2004), “Road Traffic Demand Elasticity Estimates: A review”, Transport Reviews, 24 (3), pp. 261–274.
  38. Granger, C. W. J., y P. Newbold (1974), “Spurious Regressions in Econometrics”, Journal of Econometrics, 2 (2), pp. 306-333.
  39. Hamilton, D. J. (1994), Times Series Analysis, Nueva Jersey, Princeton University Press, Princeton.
  40. Haro, A., y J. L. Ibarrola (2000), “Cálculo de la elasticidad precio de la demanda de gasolina en la zona fronteriza norte de México”, Gaceta de Economía, 6 (11), pp. 237-262.
  41. Higgins, P. A. T., y M. Higgins (2005), “A Healthy Reduction in Oil Consumption and Carbon Emissions”, Energy Policy, 33 (1), pp. 1-4.
  42. Hodrick, R. J., y E. C. Prescott (1997), “Postwar U.S. Business Cycles: An Empirical Investigation”, Journal of Money, Credit and Banking, 29 (1), pp. 1-16.
  43. Hunt, L. C., C. Salgado, y A. Thrope (1999), “The Policy of Power and Power of Policy in Honduras”, Journal of Energy and Development, 25 (1), pp. 1-36.
  44. Instituto Nacional de Ecología (ine) (2006), Inventario Nacional de Emisiones de Gases de Efecto Invernadero (inegei): 1990-2002, México.
  45. ipcc (2006), 2006 ipcc Guidelines for National Greenhouse Gas Inventories. Volumen 2 (Energy), preparado por the National Greenhouse Gas Inventories Programme, H. S Eggleston, L. Buendia, K. Miwa, T. Ngara, y K. Tanabe (comps), Japón, Published iges.
  46. Johansen, S. (1988), “Statistical Analysis of Cointegration Vectors”, Journal of Economic Dynamics and Control, 12 (2-3), pp. 231-254.
  47. Johansen, S. (1992), “Cointegration in Partial Systems and the Efficiency of Single-Equation Analysis”, Journal of Econometrics, 52 (3), pp. 389-402.
  48. Johansen, S. (1995), Likelihood-Based Inference in Cointegrated Vector Autoregressive Models, Oxford University Press.
  49. Kayser, H. A. (2000), “Gasoline Demand and Car Choice: Estimating Gasoline Demand Using Household Information”, Energy Economics, 22 (3), pp. 331-348.
  50. Kosugi, T., K. Tokimatsu, y H. Yoshida (2005), “Evaluating New CO2
  51. Reduction Technologies in Japan Up to 2030”, Technological Forecasting and Social Change, 72 (7), pp. 779-797.
  52. Kwiatkowsky, D., P. B. C. Phillips, P. Schmidt, y Y. Shin (1992), “Testing the Null Hypothesis of Stationarity Against the Alternative of a Unit Root: How Sure Are We That Economic Time Series Have a Unit Root?”, Journal of Econometrics, 54 (1-3), pp. 159-178.
  53. Lenz, H. P., S. Prüller, y D. Gruden (2003), “Means of Transportation and Their Effect on the Environment”, en D. Gruden (comp.), The Handbook of Environmental Chemistry, parte T, “Traffic and Environment”, Vol. 3, pp. 107-173.
  54. Litman, T. (2005), “Efficient Vehicles Versus Efficient Transportation: Comparing Transportation Energy Conservation Strategies”, Transport Policy, 12 (2), pp. 121-
  55. Lutsey, N. P., y D. Sperling (2007), “Canada’s Voluntary Agreement on Vehicle Greenhouse Gas Emissions: When the Details Matter”, Transportation Research Part D: Transport and Environment, 12 (7), pp. 474-487.
  56. MacKinnon, J. G., A. A. Haug, y L. Michelis (1999), “Numerical Distribution Functions of Likelihood Ratio Tests for Cointegration”, Journal of Applied Econometrics, 14 (5), pp. 563-577.
  57. Maddala, G. S., y I. Kim (1998), Unit Roots, Cointegration and Structural Change, Cambridge University Press.
  58. Ministerio de Medio Ambiente y Medio Rural y Marino (marm) (2010), Inventario de gases de efecto invernadero de España, edición 2006 (serie 1990-2008). Sumario de resultados, Madrid, Subdirección General de Calidad Ambiental.
  59. Martín, V. J., R. J. Llebot, R. E. Padilla, y E. V. Alcántara (2007), Aspectos económicos del cambio climático en España, Caixa Catalunya, monográfico.
  60. Masih, A. M. M., y R. Masih (1997), “On the Temporal Causal Relationship Between Energy Consumption, Real Income, and Prices: Some New Evidence from Asian-Energy Dependent nics Based on a Multivariate Cointegration/Vector Error-Correction Approach”, Journal of Policy Modeling, 19 (4), pp. 417-440.
  61. Ng, S., y P. Perron P. (1995), “Unit Root Tests in arma Models with Data Depend Methods for the Selection of the Truncation Lag”, Journal of the American Statistical Association, 90 (429), pp. 68-281.
  62. Nicol, C. J. (2003), “Elasticities of Demand for Gasoline in Canada and the United States”, Energy Economics, 25 (2), pp. 201-214.
  63. Oum, T. H. (1989), “Alternative Demand Models and Their Elasticity Estimates”, Journal of Transport Economics and policy, 23 (2), pp. 163-187.
  64. Patterson, K. (2000), An Introduction to Applied Econometrics: A Time Series Approach, St. Martin’s Press.
  65. Paz, S. (2008), “El alza de las gasolinas continuará indefinidamente”, Infogas, 66 (10), pp. 62-66.
  66. Pesaran, M. H., y Y. Shin (1999), “An Autoregressive Distributed Lag Modelling Approach to Cointegration Analysis”, en Strom Steinar (comp.), Econometrics and Economics Theory in the 20th Century: The Ragnar Frisch Centennial Symposium, Cambrige University Press.
  67. Phillips, P. C. B., y P. Perron (1988), “Testing for Unit Root in Time Series Regression”, Biemetrica, 75 (2), pp. 335-346.
  68. Polemis, M. L. (2006), “Empirical Assessment of the Determinants of Road Energy Demand in Greece”, Energy Economics, 28 (3), pp. 385-403.
  69. Ramanathan, R. (1999), “Short- and Long-Run Elasticities of Gasoline Demand in India: An Empirical Analysis Using Cointegration Techniques”, Energy Economics, 21 (4), pp. 321-330.
  70. Rao, B. B., y G. Rao (2009), “Cointegration and the Demand for Gasoline”, Energy Policy, 37 (10), pp. 3978-3983.
  71. Reyes, M. O. (2009), “La demanda de gasolinas en México: Efectos y alternativas ante el cambio climático”, Documento de Trabajo, Departamento de Economía Aplicada de la Universidad Autónoma de Barcelona.
  72. Sa’ad, S. (2009a), “An Empirical Analysis of Petroleum Demand for Indonesia: An Application of the Cointegration Approach”, Energy Policy, 37 (11), pp. 4391- 4396.
  73. Sa’ad, S. (2009b), “Transportation Demand for Petroleum Products in Indonesia: a Time Series Analysis”, opec Energy Review, 33 (2), pp. 140-154.
  74. Samimi, R. (1995), “Road Transport Energy Demand in Australia”, Energy Economics, 17 (4), pp. 329-339.
  75. Schafer, A., y D. G. Victor (1999), “Global Passenger Travel: Implications for Carbon Dioxide Emissions”, Energy, 24 (8), pp. 657-679.
  76. Schafer, A. y H. D. Jacoby (2006), “Vehicle Technology Under CO2
  77. Constraint: A General Equilibrium Analysis”, Energy Policy, 34 (9), pp. 975-985.
  78. Schipper, L., C. Marie-Lilliu, y L. Fulton (2002) “Diesels in Europe: Analysis of Characteristics, Usage Patterns, Energy Savings and CO2 Emission Implications”, Journal of Transport Economics and Policy, 36 (2), pp. 305-340.
  79. Secretaría de Comunicaciones y Transportes (2008), “Programa Sectorial de Comunicaciones y Transporte (2007-2012)”, Ciudad de México.
  80. Secretaría de Energía (Sener) (2008), Prospectivas de petrolíferos: 2008-2017, México.
  81. Sperling, D. (2004), Environmental Impacts Due to Urban Transport, en H. Nakamura, Y. Hayashi, y A. D. May (comps.), Urban Transport and the Environment. An International Perspective, World Conference on Transport Research Society, Institute for Transport Policy Studies, Oxford, Elsevier, pp. 99-189.
  82. Stanley, K. J., D. A. Hensher, y C. Loader (2009), “Road Transport and Climate Change: Stepping Off the Greenhouse Gas”, Transportation Research Part A: Policy and Practice, doi:10.1016/j.tra.2009.04.005.
  83. Sterner, T. (2007), “Fuel Taxes: An Important Instrument for Climate Policy”, Energy Policy, 35 (6), pp. 3194-3202.
  84. Sterner, T. y C. A. Dahl (1992), “Gasoline Demand Modelling: Theory and Application”, en Thomas Sterner (comp.), International Energy Modelling, Londres, Chapman and Hall. Sullivan, J. L., R. E. Baker, B. A. Boyer, R. H. Hammerle, T. E. Kenney, L. Muniz, y T. J.
  85. Wallington (2004), “CO2 Emission Benefit of Diesel (versus gasoline) Powered Vehicles”, Environmental Science and Technology, 38 (12), pp. 3217-3223.
  86. Uri, N. D., y R. Boyd (1999), “A Note on the Economic Impact of Higher Gasoline and Electricity Prices in Mexico”, Journal of Policy Modeling, 21 (4), pp. 527-534.
  87. Weiss, M. A., J. B. Heywood, A. Schäfer, y V. K. Natarajan (2003), “A Comparative Assessment of Advanced Fuel Cell Vehicles”, mit laboratory for Energy and the Environment Report, mit lfee 2003-001 RP.
  88. Wheaton, W. C. (1982), “The Long-Run Structure of Transportation and Gasoline Demand”, The Bell Journal of Economics, 13 (2), pp. 439-454.
  89. Wohlgemuth, N. (1997), “World Transport Energy Demand Modeling: Methodology and Elasticities”, Energy Policy, 25 (14-15), pp. 1109-1119.
  90. Zachariadis, T., y N. Kouvaritakis (2003), “Long-term Outlook of Energy Use and CO2 Emissions from Transport in Central and Eastern Europe”, Energy Policy, 31(8), pp. 759-773.
  91. Zervas, E., S. Poulopoulos y C. Philippopoulos (2006), “CO2 Emissions Change from the Introduction of Diesel Passenger Cars: Case of Greece”, Energy, 31 (14), pp. 2915-2925