
43

 
Continuous Time Models of Interest Rate:  

Testing Peso-Dollar Exchange Rate*
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Resumen

Como una extensión del artículo de Núñez, De la Cruz y Ortega (2007), diferentes mo­
delos paramétricos con saltos son probados con la metodología desarrollada por Ait­Sa­
halia y Peng (2006), basados en la función de transición. Los datos analizados correspon­
den al tipo de cambio peso­dólar. La idea es implantar modelos paramétricos de tiempo 
continuo para el tipo de cambio mencionado. Los resultados confirman que los modelos 
de tiempo continuo propuestos no son suficientemente buenos para explicar el compor­
tamiento del tipo de cambio. Sin embargo, considerando algunos modelos de tiem po 
continuo con saltos de Poisson, es posible describir tal comportamiento.
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AbstRAct 
As an extension of the article by Núñez, De la Cruz and Ortega (2007), different 
parametric models with jumps are tested with the methodology developed by Ait­Sahalia 
and Peng (2006), based on the transition function. Data analyzed are the peso­dollar 
exchange rate. The idea is to implement continuous­time parametric models to the peso­
dollar exchange rate. The results confirm that no continuous time model are not accurate 
enough to explain the behavior that describes the peso­dollar exchange rate, however, 
considering some continuous time models with Poisson jumps is possible to describe 
such behavior. 
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IntRoductIon

Since December 1994 to date, the peso­dollar exchange rate has been determined 
by the market under a floating regime forces. The Banco of México (central 
bank) has refrained from discrete interventions in the foreign exchange market 
and avoid any type of desired change of signalling. Since the financial crisis of 
1994-1995, Mexico exchange rate regime has been gradually each more flexible. 
Thus, the exchange rate is allowed to fluctuate a growing, with a fixed floor band 
and an upward crawling ceiling. In addition, have taken some initial steps to pro­
mote the development of an institutional framework that would support greater 
exchange rate flexibility. During this time interval, the exchange rate has suffe­
red serious crisis, from both of the domestic economy (the crisis of 1995) and the 
rest of the world (crisis in Asia, Russia, 11 September 2001, the Iraqi war, Sep-
tember 2008). The exchange rate flexibility has helped soften the effects of these 
crises. However, major support from the exchange rate derives from the percei­
ved sound macroeconomic Mexico bases and commitment of financial author-
ities to avoid occasional interventions.

Recently several authors have developed methodologies for estimating 
the interest rate structure as models as Nelson and Siegel (1987) and Svensson 
(1994). These models presume the existence and stability in the data, but you can 
use these models to explain the exchange rate even though the information avail­
able is insufficient or does not have the quality to estimate an approximation. So, 
it requires a methodology that is able not only to make a reliable estimate of how 
changing the structure of interest rates over time, but also extract information 
needed to operate it from the market observations.

This work stems from the idea of giving a contribution in the area of es­
timation of exchange rate in Mexico, is to test, validate or reject the application 
of models in continuous time, through a comparison with a series of observed 
data.

In this paper, a characterization of the process 

 dXt 
 – µ(Xt 

)dt + σ 
(Xt 

)dWt (1)

where tX  is the state variable and { }0, ≥t Wt  is a standard Brownian motion. The 
functions ( )tX  and ( )tX2  are respectively the drift and diffusion function of the 
process, they sometimes are parameterized.



modEls of intErEst ratE: tEsting pEso-dollar ExchangE ratE 45

 
( ) ( ) ( ) ( ) KRXXXX ⊂Θ∈== where,,y, 22

 
(2)

Any parameterization ( )tX  and ( )tX2  correspond to a parameterization 
of the marginal density. The basic idea is to use the mapping between the drift 
and diffusion against marginal density to test the model specification.

There is an exhaustive list of proposed models of continuous time dy­
namics for the short rate, to discriminate between these models, we focus on  
the following question, when a parametric model is an appropriate to describe the 
movements of exchange rate? As Núñez (2007), we will use the null hypothesis, 
which given a parametric model, thus established that there are parametric  values 
for which the parametric model under consideration is an acceptable represen­
tation of data. The alternative hypothesis, however, says that no parameter value 
is capable of reproducing the exact functions.

The next table 1 shows the list of models considered in this work:

Table 1

Parametric model

Vasicek (1977) X10 + 0

Cox, Ingersoll & Ross 
(1985) X10 + X1

CIR VR - 2/3

1X

Brennan & Schwartz 
(1979) X10 + X2

Brennan & Schwartz
(1982) X10 + 2/3

1X

Chan (1992) X
10

+ 3

2
X

General Drift XXXx /
3

2

210
+++ 3

210 XX ++

Merton (1973)
0 0

Dothan (1978) - X1

Geometric Brownian
Motion (GBM) X

1
X

1

Constant Elasticity
Variance (CEV) X1

γX2

( ),X ( ),X
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In other words, the test statistic is to compare the density implied by the 
parametric model and the nonparametric estimator, even if the parametric model 
is not well specified. Thus, the parametric density estimators and non-parametric 
be close if the parametric model is well specified. This is when you have to intro­
duce a measure for comparison, which we denote as will measure the distance 
between the two densities will be estimated and given by the following equation: 

 
( ) ( )( ) ( )∫ −≡

Θ∈

s

x

duXXXM 0
2

0,min . (3)

The statistical test is rejected when the value is large enough. The station­
ary of the marginal density of the process does not show all available informa­
tion in the data. For the test, a rejection on the marginal density is when M it is 
very large, which invalidates the parametric vector function of the drift and  
di ffusion.

The second part of the analysis is based on adding a jump diffusion proc­
ess to the model shown in Table 1. Thus is because a diffusion process with 
jumps can be approximated better data generator, the model jumps can have a 
major impact on short periods of time. Jumping explicit models to improve our 
understanding phenomena such as “rare events”. 

Usually the distribution function for these cases is not normal, the crest 
of the empirical distribution with these events is higher than the normal distribu­
tion, implying that the empirical distribution tails are heavier, i.e. it has a greater 
probability of extreme values compared with the normal distribution. 

For these cases the function to be obtained in each of the parametric 
mod els of interest rates is the transition probability function, which will apply 
the statistic suggested by Ait Sahalia (1996) as follows:

 
( ) ( )[ ]2

0,min XpXpEM −≡
Θ∈

. (4) 

in this case, measure the distance between two probability functions.

I. non-PARAmetRIc model

To do this test using the Generalized Method of Moments for the non­parametric 
model, and through the first two moments and using the Gaussian kernel can be 
obtained by approximating the marginal density function. The advantage of using 
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this technique is that the distribution of changes in interest rates does not neces-
sa rily have to be normal.

The data used to form density estimators consist of discrete observations 
of the exchange rate daily. This data is used to estimate the density of the process 
continues without replacing the continuous time model. The asymptotic proper­
ties of estimators are derived for a given period. To obtain the marginal density 
function for the non­parametric model was used the following function:
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where K (·) is the kernel function and hn the bandwidth. In addition, the following 
estimators are calculated by:
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Any other consistent EM  and VM estimators can be used. As you get  
z1– a = 1.64 and the 95 percent confidence level. For the Gaussian kernel function 
is given by: 
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1
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The two constants of this kernel function satisfy:
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And the bandwidth is given by 5.4
1−= nch nn  where cn = c times the stand­

ard deviation of the time series of spot interest rate divided by. Where is chosen 
by minimizing the mean integrated square error of the estimator.
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II. PARAmetRIc models

It considers the interest rate models with univariate distribution functions, strictly 
stationary and have the Markov property. In general, these models follow the fol­
lowing process:

( ) ( ) tttt WXtXX d,d,d +=

where tX  is the state variable and { }0, ≥t Wt  is a standard Brownian motion. The 
functions ( )tX  and ( )tX2  are respectively the drift and diffusion function of 
the process, they sometimes are parameterized.

( ) ( ) ( ) ( ) KRXXXX ⊂Θ∈== where,,y, 22 .

Any parameterization µ ( Xt ) and σ 2 ( Xt ) correspond to a parameter ization 
of the marginal density. We are working with the joint parametric family

 P = {( (· ;   ), 2 (· ;   ))I  ∈Θ} , (6)

where Θ is a compact subset of Rk. The null and alternative hypothesis are writ­
ten as:

( ) ( )
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,

where P is described by (6). And more generally given ( ),⋅  and ( ),⋅  in P, 
there is a correspondence with a parameterization of the marginal and transi­
tional densities:

( ) ( )( ) ( ) ( )( ){ }Θ∈∈⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=Π ,,,,,,,,,,, 2 Pp ,

where ( ),x is the marginal density at x and ( ),,, xtysp  is the transition pro­
bability density from x at time t to y at time s. The estimation of the densities 
explic itly takes into account the discreteness of the data. The marginal density 
corresponding to the pair ( )2,  is given by:
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where ( )ε  it serves to ensure that the integral of the density function is 1. Equa­
tion (7) is obtained from “forward Kolmogorov equation”. The density (7) is 
used for each parametric model, and depending on the expression we have to use 
a particular method of integration.

Let the true marginal density of the process be
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 and the space of possible density functions corresponding to the pairs ( )2,  in 

P is:

 

( ) ( ) ( )( ){ }Θ∈∈⋅⋅⋅=Π ,,,,, 2 PM .

Therefore the null and alternative hypotheses are:
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It is necessary that 0MH  is true to ensure that 0H  is true. If the density 
function ()⋅0  were known, is easily verify the conjecture with the density of the 
parametric model. But when is unknown, can be estimated, and thus make a sta­
tistical test to test the null hypothesis.

Whether or not the parametric model is correctly specified, a non-par-
ametric estimator of the density will converge to the true density. The parametric 
model of the density will converge to the true density only if it is correctly speci­
fied. Ait-Sahalia (1996 a) proposed a measure of the distance M between the two 
densities estimates, where the null hypothesis to be tested is that the parametric 
specification is correct. The proposed statistic is:
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The non­parametric estimator is calculated using the kernel estimator of 
the marginal density:
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And the distributions of the parameters are:
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where ()⋅0F  denotes the cumulative density function associated with density 
()⋅0 ; ( )0F  is the derivative of the functional ()⋅ΘM  is given by:
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The test statistic M̂  is distributed as:
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and MΩ  given in Ait­Sahalia (1996a, p. 421), and we use the Gaussian kernel:

( ) 





−=

2
exp

2

1 2u
uK .

Thus values are obtained M, if M is large means that the model used does 
not reflect the behavior of observed data. In any form seeks the minimum value:
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Making the appropriate calculations, include the following marginal 
density functions for each of the models of interest rate that was obtained. The 
results are presented in Table 2.

Table 2

 Parametric
model

Marginal density function

( ),x

Vasicek (1977) 
( )




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


+ 2
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Then compute the value ( )  for each of the models, this value depends 
on the model parameters ( )32103210 ,,,,,,,= .

III. tRAnsItIon densIty PARAmetRIc models wIth jumPs

For the second part of the analysis, is considered a jump diffusion process tX  
defined on a probability space ( ) [ ]( )℘ℑℑΩ ∈ ,,, ,0 Ttt  with filtration { }tℑ  satisfying 
the usual conditions:

 
( ) ( ) tttttt NJWXtXX dd,d,d ++=  (10)

Where:

{ }0, ≥tWt•  is a standard Brownian motion.
pℜ∈•  is a finite vector of parameters to be estimated.

( ) nn
tX ℜ→ℜ:,•  is the function of drift.

( ) dnn
tX ×ℜ→ℜ:,2•  is the function of dissemination of the process. 

The pure jump process • N has a stochastic intensity ( ),tX  and jump 

size of 1.

The jump in size • tJ  is independent −ℑt  and has a probability density 

( ) ℜ→ℜ⋅ n:, . In our case ( ),⋅  it is normal.

For models with Poisson jumps denote the conditional density yX t =∆+  
given xX t = , by ( ),, xyp ∆  and is also known as the transition probability 
density. 

tX  is a Markov process in continuous time, i.e. a diffusion process with 
jumps in state space Θ. The distribution function of transition probability is gi­
ven by:

( ) { }00Pr,, xXxXxyp tt =<=∆ θ ,

where 0tt > , xX t <  means ii t xX <  for ni :1= .

The assumptions of the model are the following:

Assumption 1. The variance matrix )(xV  is positive definite for all x  in the 
domain of the process .X
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Assumption 2. The stochastic differential equation (10) has a unique solution. 
The transition density ( ),, xyp ∆  is continuously differentiable with respect 
to ∆ , twice differentiable with respect to x and y.

Assumption 3. The boundary of the process .X  is unattainable.
Assumption 4. (.)(.),(.),  and (.)  are infinitely differentiable almost every-

where in the domain of .X
Proposition 1. Under assumption 2, the transition density satisfies the backward 

and forward Kolmogorov equations given by:
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Then, ( ) ( ) ( ) ( )⋅⋅⋅⋅ and,,  are infinitely differentiable at least 
any where in the domain of X. 

Using the backward and forward equations, it can be demonstrated that 
the transition density has the form:
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In (4) functions ( ) ),( yxC k  and ),()( yxD k  must be determined.
As showed in Ait­Sahalia (2006) an approximation of order 0>m  is ob­

tained:
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The term 
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captures the behavior of ( )xyp ,∆  

at y near x, and the term ( )∑
=

∆
m

k

kk yxD
1

),(  captures the tail behavior of ( )xyp ,∆

From theorem 1 below, the coefficients )(kC  and )(kD  can be founded 
(Ait­Sahalia, 2006).

Theorem 1. The backward equation imposes the following restrictions, 
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Theorem 2. The forward equation imposes the following restrictions:
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Theorem 1 and Theorem 2, given a set of constraints on the equations 
and “backward” and “forward” Kolmogorov, along with conditions 1 and 2 are 
used to solve the approximate transition density.
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Returning to the parametric models of interest rates and making the 
appropriate calculations were obtained transition density functions for each of 
them, are in Table 3. Furthermore it is assumed that the size of the jump 

tJ  is 
normal and i.i.d. with mean S  and variance 2

S .
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IV. AnAlysIs foR the sPot exchAnge RAte Peso-dollAR 

The data used to form the marginal density estimators consist of discrete obser­
vations (daily) exchange rate peso­dollar. The parameters of this process in dis­
crete time are estimated using the technique of generalized method of moments. 
Thus, the data are used to estimate the continuous density of the process. Since 
the size of the time period is large, the estimators have several desirable statisti­
cal property known as asymptotic properties. 
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Due to market conditions, the analysis is done for two time periods. The 
first is to consider the time series of the exchange rate peso-dollar on 2 January 
2004 until before the crisis September 2008. The second stage is to consider the 
period of the crisis and is considered January 2004 until February 2009.

1. Until 12 September 2008

For the first part, regardless of Poisson jumps, the results obtained for the non-
parametric model are:

Number of Data (n) 1,191

ÊM 1.70

V̂M 194.02

Confidence Level (95%) 1.64485

Bandwith 0.00009

c(alfa)= 1.92116

The results for parametric models:

Vasicek cir

Brennan & 

Schwartz 

(1982)

Chan Merton

Minimum 47.45185 47.62237 47.62237 47.62237 47.62237

Statistic M 5.31329 5.33238 5.33238 5.33238 5.33238

Results reject reject reject reject reject

cir sr Dothan cir vr gbm cev

Minimum 47.62686 47.62237 47.62237 47.62266 47.45187

Statistic M 5.33288 5.33238 5.33238 5.33241 5.31329

Results reject reject reject reject reject
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These are the results that were obtained and as noted has rejected the 
null hypothesis in each of them, i.e. there is no evidence that there are parametric 
values for which the previous models are an acceptable representation of data:

For the second part, considering Poisson jumps, the results for the non­
parametric model are:

Number of Data (n) 1,191

ÊM 23.92

V̂M 418.56

Confidence Level (95%) 1.64485

Bandwith 0.00004

c(alfa)= 0.00030

The results for parametric models, in this case 3 models were not rejected:

Vasicek
Brennan & 

Schwartz
Chan Merton

Minimum 0.000000192997 0.000000170330 9 252.656170536750 0.000000170868

Statistic M 0.000000008296 0.000000007322 397.730648900543 0.000000007345

Results can not reject can not reject can not reject can not reject

cir sr Dothan cir vr

Minimum 0.48178 8,867.98608 0.00084

Statistic M 0.02071 381.19539 0.00004

Results reject reject reject

Considering models with Poisson jumps is observed that three models 
are not rejected, which does not say that there are parametric values for which 
the models of Vasicek, Brennan and Merton have an acceptable representation of 
data.

2. Until 20 February 2009

For the first part, regardless of Poisson jumps, the results obtained for the non-
parametric model are:
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Number of Data (n) 1,300

ÊM 0.70

V̂M 12.96

Confidence Level (95%) 1.64485

Bandwith 0.00021

c(alfa)= 0.78233

The results for parametric models:

Vasicek cir
Brennan & 

Schwartz (1982) Chan Merton

Minimum 7.87259 7.89777 7.89767 7.89769 7.89776

Statistic M 2.19786 2.20489 2.20486 2.20487 2.20489

Results reject reject reject reject reject

cir sr Dothan cir vr gbm cev

Minimum 7.89963 7.89768 7.89767 7.89923 7.87279

Statistic M 2.20541 2.20486 2.20486 2.20529 2.19791

Results reject reject reject reject reject

For the period of the crisis, these are the results that were obtained and 
as noted has rejected the null hypothesis in each of them, i.e. there is no evidence 
that there are parametric values for which the previous models are an acceptable 
representation of data.

For the second part, considering Poisson jumps, the results for the non­
parametric model are:

Number of Data (n) 1,299

ÊM 21.43

V̂M 0.32

Confidence Level (95%) 1.64485

Bandwith 0.00003

c(alfa)= 0.00028
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The results for parametric models, in this case 4 models were not  
rejected:

Vasicek Brennan & Schwartz Chan Merton

Minimum 0.00000 0.00000 0.00072 0.00000

Statistic M 0.00000 0.00000 0.00003 0.00000

Results can not reject can not reject can not reject can not reject

cir sr Dothan cir vr

Minimum 0.87275 0.94609 0.00077

Statistic M 0.03965 0.04298 0.00003

Results reject reject reject

For the period of the crisis and considering models with Poisson jumps, 
it is observed that 4 models are not rejected, which does not say that there are 
parametric values for which the models of Vasicek, Brennan, Chan and Merton 
have an acceptable representation of data.

conclusIons

We show that the continuous­time models with Poisson jumps can give an ac­
ceptable representation of data, in this case the dollar peso exchange rate. How­
ever, this result was also observed in Núñez (2007) applied to the interest rate in 
Mexico.
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